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Synthesis of 3-Substituted-4-methyl-5-acetyl-4-thiazoline-2-thione
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The reaction of various potassium salts[RNHC(=S)SK, R = N(CH,),, morpholino, piperidino, and hexahy-
dro-1{1H)-azepinyl] with 3-chloro-2,4-pentanedione in ethanol at 25-30° afforded the l-acetylacetonyl substi-
tutedaminodithiocarbamates 1-4 [RNHC(=S)SCH(COCH,),]. Under refluxing conditions, the same reactants
gave the heterocyclic compounds 5-8. Possible mechanism and supporting ir, nmr and mass spectral data are

discussed.

J. Heterocyclic Chem., 23, 101 (1986).

Mathes [2] and Sandstrém [3] reported the synthesis of
mercaptothiadiazines and N-aminothiazolethiones by re-
action of potassium or ammonium dithiocarbazates with
various electrophiles such as chloroacetone, ethyl a-chlo-
roacetoacetate and sodium chloroacetate. We [4] reported
the preparation of alkenyl, cycloalkenyl and chlorobenzyl
esters of dithiocarbazic acids by the reaction of potassium
or ammonium dithiocarbazates with allyl chloride, 3-bro-
mocyclohexene, 1,3-dichloro-2-butene, 1,1,2,3-tetrachloro-
l-propene and a variety of chlorobenzyl chlorides.

The reaction of potassium salts [RNHC(=S)SK], R =
-N(CH,),, morpholino, piperidino, or hexahydro-1-(1H)-
azepinyl] in ethanol with 3-chloro-2,4-pentanedione [5] at
25-30° afforded l-acetylacetonylldimethylaminodithiocar-
bamate (1), 1-acetylacetonyl 4-morpholinodithiocarbamate
(2), l-acetylacetonyl l-piperidinodithiocarbamate (3),
l-acetylacetonyl hexahydro-1(1 H)azepinedithiocarbamate
(4), respectively (Table 1). However, under refluxing tem-
peratures (78-80°), the same reactants gave the heterocy-
clic compounds, 3-dimethylamino-4-methyl-5-acetyl-4-thia-
zoline-2-thione (3), 3-morpholino-4-methyl-5-acetyl-4-thia-
zoline-2-thione (6), 3-piperidino-4-methyl-5-acetyl-4-thiazo-
line-2-thione (7) and 3-(hexahydro-1(1H)azepinyl)}-4-meth-
yl-5-acetyl-4-thiazoline-2-thione (8), respectively (Table 2).
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Based on elemental analysis and molecular weight de-
terminations, the cyclic structures, A, had to be consider-
ed for compounds 1-4.

However, the absence of the OH absorption band at
3500-3100 cm™ and the presence of the NH absorption
band at 3168 cm™! in the infrared spectrum for 2 ruled out
structure A. In addition, the proton nmr spectra revealed
the presence of the NH proton at 8 8.75 to 9.37 (Table 1)
and the absence of OH protons. Thus, the spectral data
confirm the non-cyclic structure for compounds 1-4 and
rule out structure A.

The reaction of potassium dimethylaminodithiocarba-
mate with chloroacetone at only 25-30° gave none of the
expected ester B, but instead furnished the cyclized pro-
duct, 3-dimethylamino-4-methyl-4-thiazoline-2-thione (9) in
78% yield (Table 3). The reaction of chloroacetone with
potassium 4-morpholinodithiocarbamate in refluxing etha-
nol gave the expected 3-morphilino-4-methyl-4-thiazoline-
2-thione (10).
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Confirmation of the cyclic structure for 3-10 was afford-
ed by the elemental analysis, ir, nmr and mass spectral
data. The nmr spectra of these compounds show a large
difference (1-2 ppm) in chemical shift for two of the
methylene protons of the morpholine, piperidine and aze-
pine rings.
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The large downfield shift of two of these protons is attri-
buted to the deshielding effect of the thiocarbonyl group.

The electron impact mass spectrum for 6 furnished the
molecular weight in form of M?* 258. The dominant break-
down pattern of the molecular ion for 6 is explained by the
following McLafferty rearrangement:
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In addition of this process, the N-N bond is cleaved to
give the morpholine radical cation [C,H,NO, 86 (10)] as
the base peak. Other fragments confirm this initial cleav-
age. The thiazole ring gives rise to the following ions
which are expected.
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The ir spectrum for 6 exhibited absorption bands at
1322-1306 and 1172 cm™* attributed to the thiazoline-2-
thione ring and the thiocarbonyl group, respectively to af-
ford additional confirming evidence for the structures of
3-10.

The proposed mechanism for formation of compounds
1-10 is depicted in Scheme 1. Although the analytical data
were in agreement with the proposed structures for 5-10,
there still remained the possibility that the products ob-
tained in reactions 1-3 could be the isomeric structure C.
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In order to rule out that possibility, the corresponding
isomer of 8 was prepared by the oxidative condensation of
hexamethylenimine with 5-acetyl-4-methyl-2-thiazolethiol

[6,7] to give 11, and the nmr spectral data of compounds 8
and 11 were compared.

Table 1
b o a b b
RNH(C=8)SCHICOCH3)2 R=(CHzloN- o  N- N G (CH;)\N_
\/ < > (%
b a a b b
! 2 3 4
% NMR 4, ppm Empirical %C %H %N %S
No. Mp °C Yield CDCl,{Me,Si) Formula Caled. Found Caled. Found Calcd. Found Caled. Found
1 160-161 {1] 85 2.28 (s, 6, 2COCH,) C,H,N,0,S, 41.00 41.12 6.02 6.07 1196 11.94 27.37 27.12
2.72 (s, 6, -N(CH,),)
3.00 (s, 1, CH)
9.30 (br s, 1, NH)
2[3] 177178 [2] 77 2.13 (s, 6, 2COCH,) CoH,(N,0,S, 4346 43.68 584 580 10.14 9.87 2324 2295
2.62-2.92 (m, 4, a)
3.56-3.80 (m, 4, b)
8.75 (br s, 1, NH)
3 170-171 [2] 88 1.28-2.10 (m, 6, a) C,H;NO,S, 48.14 4832 6.61 6.86 1021 1041 23.37 23.20
2.22 and 2.30 (2s, 6, 2COCH,)
2.41-3.42 (m, 4, b)
8.87 (br s, 1, NH)
4 163-164 [2] 77 1.50-2.10 (m, 8, a) C,,H,N,0,S, 49.97 4997 699 17.09 971 981 2224 2232

2.21 and 2.30 (2s, 6, 2COCH,)
2.81-3.55 (m, 4, b)
9.37 (br s, 1, NH)

[1] Recrystallization from ethanol. [2] Recrystallization from ethyl acetate. [3] ir (potassium bromide) 3168 (H bonded NH), 2800-3000 (CH, mor-
pholino + CH, of diketone), 1570 (C=0 of 1,3-diketone in enol form, 1100, 1074, 1030 (morpholine bonds) and 1020 (C=S) cm"'.
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Reflux
No. Hours
5 3
6 {3,4,5]
73] 11
8 [3) 3

Mp °C

118-119 [1]

126-127 [2]

134-135 (2]

105-106 [1]

3-Substituted-4-methyl-5-acetyl-4-thiazoline-2-thione

Table 2
b a a
CH3r:]COCH3 /\
R-N_ S R={CHz)pN- O  N-
s b ¢ a
5 6
% NMR 4, ppm Empirical
Yield CDClL,-(Me,Si) Formula
89 2.33 (s, 3, CH,C=) C.H,,N,0S,
2.56 (s, 3, COCH,)
3.22 (s, 6, -N(CH,),)
7 2.38 (s, 3, CH,C=) C,,H,N,0,5,
2.62 (s, 3, COCH,)
2.63-3.00 (m, 2, a)
3.40-4.09 (m, 4, b)
4.63-5.07 (m, 2, ¢)
78 1.09-2.09 (m, 6, a) C, H,N,0S,
2.30 (s, 3, CH,C=)
2.55 (s, 3, -COCH,)
2.67-3.09 (m, 2, b)
4.21-4.76 (m, 2, c)
80 1.46-1.99 (m, 8, a) C,.H,N,0S, -

2.36 (s, 3, CH,C=)
2.62 (s, 3, COCH,)
2.78-3.50 (m, 2, b)
3.79-4.49 (m, 2, c)

44.51

%C

51.53 51.78 6.29 626 10.93

53.30 53.37 671 6.90

44.51
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%H %N %S

Caled. Found Caled. Found Caled. Found Caled. Found

5.59 577 1295 1285 29.65 29.40

4649 46.62 546 566 10.84 10.74 24.82 24.60

11.02 25.01 24.85

10.36 10.20 23.72 23.4

[1] Recrystallization from ethanol. [2] Recrystallization heptane. [3] The methyl hydrogens shown as [c] in 6, 7 and 8 are adjacent to the C=S g;oup
and the large downfield shift of these methylene protons is due to the deshielding effect of the thiocarbonyl moiety. [4] Electron impact mass spec-
trum mle (relative intensity) M* 258 (15), 174 (15), 173 (58), 159 (6), 158 (53), 130 (9), 114 (6), 86 (100), 85 (70), 84 (3), 72 (7), 71 (8). [5] ir (potassium bro-
mide) 2800-3000 (CH, of morpholino), 1680 (C=C), 1640 (C=0), 1586 (mode of the thiazoline-2-thione ring), 1420 (CH, asym), 1380 (CH; sym), 1322

and 1306 NC(=S)S- mode of thiazoline ring), 1240 (morpholine) and 1172 (C=8) em™.

Reaction

No. Temp °C

9 25-30
24 hrs

10 (3] 78-80
18 hrs

Mp °C

66.0-66.5 [1]

150151 [2]

Table 3
=
A R =(CH3)2N~
hg
S
9
% NMR 4§, ppm Empirical
Yield CDCI,{(Me,Si) Formula

78 2.17 (s, 3, CH,C=) C,H,,N,S,

3.25 (s, 6, -N(CH,),)

6.15 (s, 1, =CH)
75 2.19 (s, 3, CH,C=) C.H,N,S,

2.60-3.06 (m, 2, a),
3.31-4.17 (m, 4, b),
4.675.22 (m, 2, ¢)
6.17 (s, 1, =CH)

o N
/

%C
Caled. Found Caled. Found Caled. Found Caled. Found

41.35 41.28 578 5.83 16.07

44.70 559 5.63

%H %N %S

16.08 36.80 36.59

12.95 13.01 29.65 29.74

[1] Recrystallization from heptane. [2] Recrystallization ethanol. [3] The methylene shown as [¢] in 10 are adjacent to the C=8 group and the large

downfield shift (4.67-5.22 8) is due to the deshielding effect of the thiocarbonyl moiety.

CH3/—__TCOCH3
N S =

SH

HN_ (CH2)4
A%

2.52 2.68
CH3—,—TCOCH3
NaOC! N s
— X 33-38 [s]
C2H5O0H A~
45-50° S=N_ (CHp)g
1.8-2.1
3.3-3.8
" mp 121-2°

The nmr spectrum of compound 11 did not show the
large downfield shift (6 3.79-4.49) for any of the azepine
ring protons as also exhibited by spectra for 8, 6, 7 and 10
which was attributed to the thiocarbonyl group deshield-
ing effect. Thus, sufficient evidence was obtained to rule
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out the isomeric structures such as 11 and additional sup-
port for the original proposed structures 5-10 was afford-

ed.
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= =N(CH3)2, morpholino, piperidino and hexahydro-I-{1H)azepinyl, R' = COCH3.

R = -N(CH3)2, morpholino. R'=H.

EXPERIMENTAL

The nmr spectra were obtained with a Varian T-60 nmr spectrometer.
The chemical shifts are reported in ppm 8, using tetramethylsilane as re-
ference. All melting points were taken upon a Fisher-Johns block and are
uncorrected. The infrared spectra for 2 and 6 were obtained with a
Perkin-Elmer Model 21 spectrophotometer with a sodium chloride
prism. The electron impact mass spectrum for 6 was determined with a
Varian-MAT CH-7A mass spectrometer operating at an ionizing poten-
tial of 70 ¢V using a direct insertion probe technique with a source tem-
perature at 250°.

1-Acetylacetonyl Dimethylaminodithiocarbamate (1). 1-Acetylacetonyl
4-Morpholinodithiocarbamate (2). 1-Acetylacetonyl 1-Piperidinodithio-
carbamate (3). 1-Acetylacetonythexahydro-1(1 H)-azepinedithiocarbamate

(4).

To a stirred slurry at 0° containing 0.25 mole of potassium dimethyl-
aminodithiocarbamate [8] potassium 4-morpholinodithiocarbamate [8]
potassium l-piperidinodithiocarbamate [8] or potassium hexahydro-1-
(1H)-azepinedithiocarbamate [8] in 400 ml of ethanol, 33.7 g (0.25 mole)
of 3-chloro-2,4-pentanedione [5} was added in one portion. An exothermic
reaction occurred causing a temperature rise from 0° to 25° over a 1 mi-
nute period. By external cooling the temperature of the stirred reaction
mixture was never allowed to exceed 30°. The reaction mixture was stir-
red at 25-30° for 24 hours. After cooling to 0°, 600 g of ice water was ad-
ded and stirring continued at 0-10° for 30 minutes. The solid was collect-
ed by filtration, washed with 500 ml of water and air dried at 25-30°. The
data are summarized in Table 1.

3-Dimethylamino-4-methyl-5-acetyl-4-thiazoline-2-thione (5), 3-Morpholi-
no-4-methyl-5-acetyl-4-thiazoline-2-thione  (6), 3-Piperidino-4-methyl-5-
acetyl-4-thiazoline-2-thione (7) and 3{Hexahydro-1{1H)-azepinyl}-4-meth-
yl-5-acetyl-4-thiazoline-2-thione (8).

To a stirred slurry at 20° comprising 0.25 mole of the same potassium
salts listed above in 300 ml of ethanol, 33.7 g (0.25 mole) of 3-chloro-2,4-
pentanedione [5] was added in one portion. An exothermic reaction oc-
curred causing a temperature rise from 20° to 50°. The stirred reaction
mixture was then heated at reflux for the time period specified in Table 2
and then stirred at 25-30° for 18 hours. After cooling to 5°, 600 g of ice
water was added and stirring continued at 0-10° for 1 hour. The solid was
collected by filtration, washed with 1 liter of water and air-dried at
25-30°. The data are summarized in Table 2.

3-Dimethylamino-4-methyl-4-thiazoline-2-thione (9) and 3-Morpholino-4-
methyl-4-thiazoline-2-thione (10).
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To a stirred slurry at 20° containing 0.25 mole of potassium dimethyl-
dithiocarbamate or potassium 4-morpholinodithiocarbamate in 400 ml of
ethanol, 23.2 g (0.25 mole) of chloroacetone was added in one portion. An
exothermic reaction, causing a temperature rise from 20° to 44° and
37°, respectively was observed. The reaction mixture was then stirred at
the temperatures and for the time period specified in Table 3. After cool-
ing to 5°, 700 g of ice water was added and stirring continued at 0-10°
for 1 hour. The solid was collected by filiration, washed with 500 ml of
water and air-dried at 25-30°. The data are summarized in Table 3.

5-Acetyl-2-hexamethyleniminethio-4-methylthiazole (11).

A stirred solution containing 43.3 g (0.25 mole) of 5-acetyl-4-methyl-2-
thiazolethiol [6], 100 g (1.0 mole) of hexamethylenimine and 300 ml of
2-propanol was heated at 45-50° for 30 minutes. To this stirred solution,
at 45-50°, was added, drop by drop, in 2 hours, 121 ml(23.1 g/100 ml) of
aqueous sodium hypochlorite. After stirring at 45-50° for additional 30
minutes, the reaction mixture was cooled to 0°. The excess sodium hypo-
chlorite was destroyed by the addition of 5 g of sodium sulfite. To the
stirred reaction mixture 500 ml of cold water was added dropwise at
0-10°. After stirring at 0-10° for 30 minutes, the precipitate was filtered,
washed with water until free of chloride and air-dried at 25-30°. Crude
11, mp 118-119°, was obtained in 73% yield. After recrystallization from
heptane it melted at 121-122°; nmr (deuteriochloroform) 4 1.50-2.10 (m,
8, a), 2.52 (s, 3, CH,C=), 2.68 (s, 3, COCH,), 3.3-3.5 (m, 4, b).

CH3 ==-COCH3

NS
Y A
S-N" (CHp)4q
N a
b

Anal. Caled. for C,,H N,0S,: C, 53.30; H, 6.71; N, 10.36; S, 23.72.
Found: C, 53.38; H, 6.72; N, 10.37; S, 23.77.

Acknowledgement.

The authors express their gratitude to Dr. W. H. Urry of the Universi-
ty of Chicago for the mass spectral data and A. B. Sullivan of Monsanto
Company for some of the nmr data.

REFERENCES AND NOTES

[1] Presented at the 189th National Meeting of American Chemical
Society, Organic Division, Miami Beach, FL, April 1985.

[2} R. A. Mathes, J. Org. Chem., 17, 877 (1952).

[3a] K. Sandstrom, Arkiv Kemi, 4, 297 (1952); Chem. Abstr., 47,
9721; [b] Ibid, Arkiv Kemi, 7, 249 (1954); Chem. Abstr., 50, 313
(1956); [c] Ibid, Arkiv Kemi, 8, 487 (1955); Chem. Abstr., 50, 12073
(1956); [d] Ibid, Arkiv Kem:, 9, 127 (1955); Chem. Abstr., 50, 13049
(1956).

[4a] J. J. D’Amico, Monsanto Co., U. S. Patent 3,261,858 dated
7/19/66; Chem. Abstr., 65, 15242¢ (1966), [b] J. J. D’Amico and P. C.
Hamm, Monsanto Co., U. S. Patent 3,284,482, dated 11/8/66; Chem.
Abstr., 66, 28513f (1967); [c] J. J. D’Amico and P. C. Hamm, Monsanto
Co., U. S. Patent 3,287,099 dated 11/22/66; Chem. Abstr., 66, 94805d
(1967).

[5] E. Buckman and M. Richardson, J. Am. Chem. Soc., 67, 345
(1945).

6] J. J. D’Amico, J. Org. Chem., 75, 102 (1953).

[7] J. J. D’Amico, Monsanto Co., U. S. Patent 2,841,583 (1958);
Chem. Abstr., 52, 20199b (1958).”

[8a] W. Reed and G. Oerntel, Ann. Chem., 590, 136 (1954); [b] [3a]
and [c] E. E. Reid, **Organic Chemistry of Bivalent Sulfur”, Vol. IV,
Chemical Publishing Co., Inc, New York, NY, 1962, pp 224-245 and
291-293.



